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Abstract. In this paper we give a continuous version (valid for flows) of the geometric control
method, introduced in [11] and constructed for mappings on2D Poincaŕe sections. This method
does not require explicit knowledge of the dynamics, just a rough location of the periodic orbit
and a single parameter easily computed from four data points. Applicability in numerical and
real experiments is discussed.

1. Introduction and summary

The concept of controlling chaos has attracted recent interest both in theoretical [1–13] and
experimental [16–19] areas. The main idea in suppressing chaotic behaviour is to select
some desired unstable periodic orbit in the phase space (these orbits fill the phase space
densely and serve as backbones for the chaotic behaviour observed [15]) and stabilize it by
a slight change of the dynamics. A great variety of different stabilizing methods have been
constructed (see [6–8] for a review), but most of them require information about the chosen
periodic orbit, such as exact location, eigenvalues and eigendirections.

In [11] a self-consistent stabilizing method is given, constructed for mappings on2D

Poincaŕe sections with the advantage that no information is needed about the periodic orbit,
only a rough location of it and the value of a single parameter (k2) easily computed from
four consecutive data points in the vicinity of the periodic orbit. Once the rough location
of the desired periodic orbit on the2D Poincaŕe section is known (for ‘targeting’ methods
see [11, 14]) together with the parameterk2, the control is switched on and the unstable
(hyperbolic) orbit is reached exponentially fast. The control presented in [11] is done by a
perturbativechange of the dynamics in the vicinity of the desired orbit. The control formula
producing the required behaviour is given in terms of the map characterizing the discrete
dynamics on the Poincaré section. Therefore the question arises of whether the method could
be applied (and how) on continuous systems like the Duffing oscillator, Lorentz system etc
or to real experiments.

In this paper we give a continuous version of the same method deriving the perturbative
terms to be added to the original system of differential equations (which are not necessarily
known in an explicit form) in order to achieve the desired stable behaviour (section 3).
Then we show how this is applied in continuous systems by controlling a period-one and
a period-two orbit of the Duffing oscillator (section 4). The possibility of experimental
applications is also discussed.
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24061-0435, USA.
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2. The geometric control method on2D Poincaré sections

Before investigating the continuous case (section 3) we would like to give an intuitive and
geometric description of the control method presented in [11].

Let us consider a Poincaré section on which the dynamics is characterized by the map
F and the linearized vicinityR of an unstable fixed point (or periodic orbit)R∗ to be
stabilized. As is emphasized in [11], in order to control (stabilize) the fixed pointR∗ we
only need to know a rough location for it, i.e. the position of the ‘target’ regionR. Nothing
about the eigenvalues, eigendirections or accurate localization is needed. The controlling
algorithm is constructed in a self-consistent way driving the iteration into the fixed point
R∗ exponentially fast. Simultaneously we obtain the accurate position, eigenvalues and
eigendirections of the fixed point. Although the control formula itself works without any
geometric construction, it is called ‘geometric’ because of the key idea behind its derivation
which is illustrated in figure 1. The fixed point is set in the origin in the lower left-hand
corner of the figure (not shown in the picture). LetP0 be some initial point inR, and
consider its forward imagesP1 andP2, and one pre-imageP−1. These points define three
vectors as denoted in figure 1 byv1, u1 andu2. They also define alevel line having the
property that the images and pre-images of any point on this curve lie on the curve itself,
see figures 2(a) and (b). These curves in the case of hyperbolic fixed points are hyperbola-
like ones enteringR from the stable direction and exiting along the unstable direction. In
the appendix a mathematical definition of these lines is given by deriving their equation
in implicit form. Figure 3(a) represents the level lines in the case of dissipative dynamics
while figure 3(b) stands for the conservative case. The fixed point is stabilized only if the
sequence of iterations converges intoR∗. However, because it is an unstable fixed point of
the mapF the iterations will approachR∗ up to a certain extent only (which is the shortest
distance between the level line andR∗) and then depart from it along the unstable branch
of the level line. In order to achieve stable behaviour, it is obvious that the dynamics has
to be changed, and such thatR∗ becomes attractive for the new map. This implies that the
new sequence of iterates must ‘cross’ the level lines of the original mapF ending finally

Figure 1. The geometric construction of the controlling algorithm in the geometric control
method.
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Figure 2. Level lines around a hyperbolic fixed point, for (a) dissipative and (b) conservative
cases. The diamonds show the consecutive steps (the series ofV and V ∗) of the geometric
algorithm for both cases.

in R∗ (shown in figures 2(a) and (b) as the zigzag broken line). (As we will see later, the
dynamics is altered in such a way thatR∗ is a fixed point for the new map, too.) This
observation of crossing the level lines ofF will be used in the derivation of the new map.
We are going to construct geometrically first the sequence of iterates converging into the
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Figure 3. The Poincaŕe section from figure 1 and the continuous, driven solutionΨ (for Ξ is
similar) with endpoint atV on the Poincaŕe section.

fixed point, and then give the expression (in terms of the iterates ofF ) for the new map. In
order to reach a level line closer toR∗, let us construct the intersection point of the supports
of vectorsv1 andu2, denoted byV . Obviously the pointV fulfils our claim, i.e. is on a
level line closer to the fixed point than the previous one. However, if we continued this
process (by successively constructingV ) we still would not be able to hit the fixed point,
just to approach its unstable manifold closely (W±

u in figure 2) and then exitR along that
manifold. This is because when constructing theV we makeone forward step on average
(two forward and one backward) therefore we would leave the fixed point’s neighbourhood
exponentially fast. In order to perform as many forward as backward steps we need to
complete the algorithm by constructing another pointV ∗ as described below.

The point V is mapped in one step intoP3. If we had taken two pre-images ofV
(shown asQ−1 and Q−2 in figure 1) then these four points (includingV and P3) would
determine the intersection pointV ∗ in the same manner asV was determined by the set
of four pointsP−1, P0, P1 and P2. (However, as will see, it is not necessary to take the
backward images which in practical situations is generally not possible.) Let us denote by
XM the position vector of the pointM in a coordinate system with the origin inR∗.

The position ofV ∗ is related in the same way to the vectoru3 = XP3 − XV (defined
by the pointsV andP3) asV is related tou2 = XP2 − XP1 (see figure 1):

XV = XP1 + k2[XP1 − XP2] (1)

XV ∗ = XV + k2[XV − XP3] (2)

wherek2 is the ratio between the lengths of the collinear vectorsXP1 − XV and u2 (or
XV ∗ − XV andu3). In [11] is shown thatk2 is actually the inverse value of the trace of
the linearized dynamics aroundR∗, and is easily found from four consecutive data points
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in R:

k2 = |u1 × v1 |
|u2 × v1 | . (3)

The process starting fromP0 and ending inV ∗ is called one iteration step of the geometric
method. In the next step takeV ∗ as a starting point (asP0) and repeat the procedure again
and again. The pointV is just an intermediate construction point, the series of iterates
for the new map being theV ∗ (started fromP0). It is also obvious that the geometrical
construction ofV ∗ involves three forward iterates (the pointsP1, P2 starting fromP0 andP3

starting fromV ) and three backward ones (P−1 from P0 andQ−1, Q−2 from V ) therefore
on averagezero steps are made. This assures that the sequence ofV ∗ does not leaveR once
it is started from there. After a few steps one can reach the origin (which isR∗) with very
high accuracy because of the fact that the iteration from pointP0 to V ∗ (or the new map)
has both eigenvalues smaller than unity in absolute value, i.e. the fixed point for this map
is an attractive one (for a proof, see [11]). In the general case the accurate position ofR∗

might be unknown, as well as the linearized dynamics around it (i.e. the explicit expression
of the linearizedF in R). It is assumed that we can only generate (with a computer or an
experimental device) the image (output) of an input point. Therefore, the control formula
has to be expressed in terms of the full mapF . This can easily be given on the basis of
expressions (1) and (2). It reads as

Rn+1 = E2(F (Rn)) n = 0, 1, 2, . . . (4)

where

E(R) = R + k2[R − F (R)] . (5)

R0 is (the position vector of) a starting point inR (asP0), thenF (R0) corresponds toP1

andF (F (R0) to P2 in figure 1. E then makes a shift toV and another application of it
takes the iterate toV ∗. Using instead ofF the mapE2 ◦ F , the fixed pointR∗ becomes
stable.

Observe that the functionE in (5) differs from the identity function by aperturbative
term only. And this term|R − F (R)| becomes smaller and smaller when approachingR∗.
Thus the control is achieved by aslight change of the dynamics in the target region. When
one constructs the continuous version of (4) this property will be kept. Again, we emphasize
that (4) and (5) work without any geometrical interpretation, the latter being presented only
as the originating idea for them.

3. Control formula for three-dimensional flows

The stabilizing algorithm given in [11] is useful when one can easily construct the image
points in some Poincaré section together with the modified map of the control formula (4).
If the mapF is constructed from a system of continuous differential equations (such as,
for example, the Duffing oscillator, the Röessler system etc) then the interesting question
naturally arises of what is a corresponding system of continuous differential equations for
the modified map (4) of the control formula? Another reason for answering this question is
continuity. Observe that the control (4), (5) actsin the Poincaŕe section. This would mean
that in practice we have to wait until the trajectory arrives on this plain and thensuddenly
apply the action ofE. In practical situations this might be hard to accomplish. The iterates
throughF are generated ‘continuously’ in the space outside the Poincaré section but for
E this is no longer true. If the Poincaré section presented in figure 1 is taken somewhere
in the three-dimensional space of some set ofODEs, then we have to give the (continuous)
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part of the trajectory between the pointsP1 and V (the mappingE) outsidethe Poincaŕe
section. This means solving the problem of driving the continuous solution started at time
t = 0 from the pointP0 into the pointP1 (at t = T ), then intoV at (att = 2T ), and finally
into V ∗ (at time t = 3T ) (see figure 3). This continuous driving is performed by adding
perturbativeterms to the original system of differential equations.

In the following we give the derivation of these additional terms. Assume that the map
F is generated by a system of autonomous, ordinary differential equations (ODEs):

Ẏ = D(Y ) . (6)

Let Y0(t) denote a periodic solution to (6) with periodT :

Y0(t + T ) = Y0(t) (7)

and let us consider a thin tubeT around the closed curveY0(t) so that the flow is linearized
insideT , i.e. equation (6) is approximated by

Ẋ = AX (8)

where

X(t) = Y (t) − Y0(t) (9)

and

A = ∂D
∂Y

∣∣∣∣
Y =Y0(t)

(10)

is the derivative matrix ofD (time dependent throughY0(t)). HereX(t) is analogous to
XM from the previous section. Imagine a Poincaré section as the plane perpendicular to the
curve given by the solutionY0(t) at time t = 0, see figure 3. The intersection pointY0(0)

is identified with the fixed pointR∗ from section 2. Moreover, the same local coordinate
system can be considered with the origin inR∗ . R is just the domain on the plane cut out
by the tubeT . We shall denote by8(P0, t) a solution of (8) with initial conditionP0:

8̇(P0, t) = A(t)8(P0, t) 8(P0, 0) = XP
. (11)

More correct would be the notation8(XP0, t) because8 as a function depends on the
coordinates (or position vector) of the pointP0 and not on the point itself, but because this
will not create confusion, however, we use the simpler notation. Obviously the relation

8(P0, t) = 8(P1, t − T ) (12)

holds. It just means that the trajectory started at timet from P0 and arrived inP1 after time
T ; it is equivalent to the trajectory started fromP1 at the later timet − T . Observe that
8(P0, T ) = XP1. To drive the trajectory continuously fromP1 to V one has to change (8)
such that att = T the desired relation (1) is valid. Let us denote the continuous solution of
the perturbed system ofODEsstarting fromP1 and ending after one period inV by Ψ(P1, t).
Thus

Ψ(P1, 0) = XP1 Ψ(P1, T ) = XV . (13)

Our requirements are only (1) and (13) and the restriction that9 be inside the tubeT at
any time 0< t < T .

We give a possible solution, but one has to emphasize that this is not unique. Infinitely
many curves can be constructed with the specified limit conditions insideT . Consider the
following form for the solution9:

Ψ(P1, t) = 8(P0, t) + α(t) [8(P0, t) − 8(P1, t)] . (14)
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The continuity requirement and the limit conditions (1), (13) fix the value of the function
α(t) at the endpoints:

α(0) = −1 α(T ) = k2 (15)

(for t = T we get back (1)). From equation (14) one can express8(P1, t) as

8(P1, t) = 1 + α(t)

α(t)
8(P0, t) − 1

α(t)
9(P1, t) . (16)

In order to find the system ofODEs having the solutionΨ, take the derivative of (14) with
respect to time:

Ψ̇(P1, t) = 8̇(P0, t) + α(t)
[
8̇(P0, t) − 8̇(P1, t)

] + α̇(t) [8(P0, t) − 8(P1, t)] . (17)

From equations (11) and (12):̇8(P1, t) = A(t + T )8(P1, t). Then using (16) and the fact
that the matrixA is periodic, i.e.A(t ± T ) = A(t) (because the system is autonomous,
A(t) depends ont only throughY0(t) which is periodic) we obtain

Ψ̇(P1, t) = A(t)Ψ(P1, t) + α̇(t)

α(t)
[Ψ(P1, t) − 8(P0, t)] . (18)

The second expression on the right-hand side of (18) gives the required additional
(perturbative) term. The divergence of this term atα = 0 is only apparent because at
this value the difference in the rectangular brackets also vanishes, such that the perturbative
force disappears (from equation (14) it follows that whenα = 0: Ψ(P1, t) = 8(P0, t)).
For the moment we leave the functionα undetermined and return to its specification later.

Let us now drive the solution from the pointV in the Poincaŕe section to the pointV ∗,
see figure 1. For this, consider the modified solution (denoted byΞ) in the form

Ξ(V , t) = Ψ(P1, t) + β(t) [Ψ(P1, t) − 8(V, t)] . (19)

Again, we are searching for the system ofODEs having the solution (19) with initial and
endpoints inV andV ∗, respectively. Proceeding analogously as before, we find

Ξ̇(V , t) = A(t)Ξ(V , t) + β̇(t)

β(t)
[Ξ(V , t) − Ψ(P1, t)]

+ [1 + β(t)]
α̇(t)

α(t)
[Ψ(P1, t) − 8(P0, t)] . (20)

From equation (19) the boundary conditions (see also equations (1) and (2)):

Ξ(V , 0) = XV = XP1 + β(0)[XP1 − XV ] (21)

and

Ξ(V , T ) = XV ∗ = XV + β(T )[XV − XP3] (22)

yield

β(0) = −1 β(T ) = k2 . (23)

Comparing (23) with (15) we can make the following identification:

α(t) ≡ β(t) . (24)

With this identification the expression of (20) takes the simpler form

Ξ̇(V , t) = A(t)Ξ(V , t) + α̇(t)

α(t)
[Ξ(V , t) − 8(P0, t)] + α̇(t) [Ψ(P1, t) − 8(P0, t)] . (25)

Being arrived inV ∗, the whole procedure can then be repeated again and again, and
the series ofV andV ∗ will converge exponentially to the fixed point.
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It is worth rewriting the formulae above in terms of the original system of differential
equationsD. This can be done rather easily by using (7), (9) and (10). FromP0 to P1 we
have (see equation (11)):

Ẏ (t) = D(Y (t)) t ∈ [0, T ] Y (0) = Y0(0) + XP0 . (26)

From P1 to V (see equation (18)):

Ṡ(t) = D(S(t)) + α̇

α
[S(t) − Y (t)] t ∈ [0, T ] S(0) = Y (T ) (27)

and fromV to V ∗ (see equation (25)):

Q̇(t) = D(Q(t)) + α̇

α
[Q(t) − Y (t)] + α̇[S(t) − Y (t)]

t ∈ [0, T ] Q(0) = S(T ) . (28)

(29)

TheS(t) andQ(t) are the corresponding solutions in the global coordinate system (the one
in which (6) is written) to the solutionsΨ(t) of (18) andΞ(t) of (25), respectively. As we
can see, the above equations have to be solved in the order (26), (27), (29). After solving
(26) take as starting pointY (T ) for (27) then solve it in the time intervalt ∈ [0, T ], etc.
Then whent = T in the last equation, takeQ(T ) as a starting position for the first one
again, and repeat the cycle. The above equations are certainly not in the most convenient
form, but they can be put together in a single system ofODEs:

Ż(t) = D(Z(t)) + ω1(t)
γ̇

γ
[Z(t) − Z(t − T )] + ω2(t)γ̇

1 + γ

γ
[Z(t − T ) − Z(t − 2T )]

t ∈ [0, ∞) Z(0) = Y0(0) + XP0 (30)

whereω1, ω2 andγ are the functions

ω1(t) = 2

[
1

2
+ cos

[(
t

T
+ 1

)
2π

3

]]
ω2(t) = 2

[
− 1

2
− cos

[
−

(
t

T
− 1

)
2π

3

]]
(31)

γ = α

(
T

{
t

T

})
with 2(x) as the Heaviside function (2(x) = 1 if x > 0, otherwise2(x) = 0), and{x}
is the fractional part of the real numberx. ω1 and ω2 are two square waves presented in
figure 4. It is easy to see that when 3k 6 {t/3T } 6 3k + 1 (k = 0, 1, 2, . . .) then (30)
reduces to (26), (ω1 = ω2 = 0) when 3k + 1 6 {t/3T } 6 3k + 2 then (30) reduces to (27)
(ω1 = 1, ω2 = 0), and for 3k + 2 6 {t/3T } < 3(k + 1), (29) is recovered (ω1 = ω2 = 1).

For the functionα, besides the boundary conditions (15) the only restriction is that the
solutionsΨ andΞ be inside the linearized domain, i.e. tubeT . It is easy to see that this
is fulfilled by the simplest, i.e. linear form ofα:

α(t) = 1 + k2

T
t − 1 . (32)

In order to perform the control we need to keep track the trajectory for a time interval equal
to 2T in the past (see equations (30)). It gives the information necessary to determine the
future of the trajectory which is on the desired periodic orbit.
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Figure 4. The ω1 (thin broken line) andω2 (thick broken line) functions.

4. An example. Applicability of the control method

To illustrate the applicability of the ideas above let us take the Duffing oscillator [8, 9]:

D : ẋ = y ẏ = −x3 + ay + b cost (33)

at parameter valuesa = 0.3 andb = 39. Obviously, equation (33) is a non-autonomous,
time-periodic system, but it is equivalent to a three-dimensional time-independent system
after introducing a third coordinatez and a third equatioṅz = 1 with the initial condition
for z: z(0) = 0. Figure 5 shows the chaotic trajectory started from(0, 0) at t = 0 and
stopped att = 20T (hereT = 2π ). In figures 6(a) and (b) one can see two stabilized
(using equation (30)), (a) a period-one and (b) a period-two orbit. Figure 6(c) shows the

Figure 5. Chaotic trajectory of the Duffing oscillator (equation (30)) started from point (0, 0)
at t = 0 and stopped att = 40π .
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Figure 6. A stabilized, period-one orbit of the Duffing oscillator (a) with coordinatesx = 1.893,
y = −1.422 88 on the Poincaré section, and (b) a period-two orbit with coordinatesx = 2.164 01,
y = 0.021 76.

series of successiveV ∗ in the Poincaŕe section (for the period-one orbit from figure 6(a)),
exponentially converging to the fixed point.
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Figure 6. (Continued.) (c) The exponentially converging series of successiveV ∗ in the Poincaŕe
section, for the period-one orbit.

From the expression for the controlled system ofODEsin (30) one can see that the terms
added are perturbative and dissipative. These correspond to the addition of dissipative (and
perturbative) forces to the system which stabilize the desired periodic orbit as long as these
forces are present in the system. Because these forces are making use of the present and the
previous states of the system only (besides theω1(2) and γ simple functions), we believe
that there are experiments in which with properly designed devices these damping forces
can be created and used for control.

Numerically, the method can be used successfully anytime and as an example we can
mention the hydrodynamical two-dimensional advection problems. The surface dynamics of
a single, advected particle even in a time-periodic velocity field can be strongly chaotic [20].
Therefore the equations of motion are similar in structure to the equations for the Duffing
oscillator, but usually they are much more complicated and their form cannot be given
explicitly in terms of analytic functions. However, numerically (30) presents no problems.

5. Conclusions

In the present paper we gave a continuous extension valid for three-dimensional flows of the
geometric method [11]. The advantage of the method is the fact that only a previous rough
localization of the periodic orbit is needed, the orbit’s periodT and a single parameterk2

which can easily be computed using formula (3) from four data points. By ‘rough’ we
mean a deviation from the real orbit not larger than the domain in which the flow can be
linearized. It is also required that these four consecutive points be all in this domain (on
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a previously chosen Poincaré section). No knowledge is needed about the eigenvalues and
eigenvectors of the periodic orbit. The perturbative velocity field which controls the system
is given by the two extra terms in (30). These containmemoryterms, using previous states
of the system as feedback and, therefore, a continuous monitoring of the states is needed.
However, we do not have to keep track of the trajectory for a time interval longer than
twice the orbit’s period.

Also note that the control is not achieved by tuning a certain parameter of the system
(which in some cases might not be available) but by adding the above-mentioned perturbative
memory-type dissipative forces.
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Appendix. Implicit equation for level lines

Although it is not directly related to the application of the control formulae (30) and (26)–
(29) themselves, it is interesting to give a defining equation for these level lines.

Let us then consider that the map in the linear neighbourhood of the fixed point
considered in the origin and characterized on the Poincaré section by the 2× 2 matrix L:

L =
(

a b

c d

)
.

Then thenth image of an initial pointr0 through the iteration will be given by

rn = Lnr0 . (A1)

Our goal is to find an equation for the curve determined by the set of pointsrn. Let
λ1(2) be the eigenvalues of the matrixL above. Then two eigenvectors belonging to these
eigenvalues will be given by

for λ1 :

 1

λ1 − a

b

 and forλ2 :

 1

λ2 − a

b

 . (A2)

Observe thatm1 ≡ (λ1−a)/b andm2 ≡ (λ2−a)/b are the slopes of the two eigendirections.
By using a similarity transformation:

L = U−1ΩU (A3)

with

Ω =
(

λ1 0
0 λ2

)
U = 1

m2 − m1

(
m2 −1

−m1 1

)
and U−1 =

(
1 1

m1 m2

)
.

(A4)

Therefore (A1) reads as

Urn = ΩnUr0 (A5)

or explicitly

m2xn − yn = λn
1(m2x0 − y0) − m1xn + yn = λn

2(−m1x0 + y0) (A6)
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where(xn, yn) are the coordinates of the point with position vectorrn. By eliminatingn

from the two equations above, is found:

ln |λ2| ln |m2xn − yn| − ln |λ1| ln | − m1xn + yn|
= ln |λ2| ln |m2x0 − y0| − ln |λ1| ln | − m1x0 + y0| = constant≡ K ∀n .

(A7)

Therefore, the level lines are equivalent to the family of curves

|m2x − y|ln|λ2|

|−m1x + y|ln|λ1| = eK (A8)

being valid in all four quadrants. If the dynamics is conservative, i.e.|λ1λ2| = 1 the
equation above simplifies to|(m2x − y)(−m1x + y)| = constant, which is the equation for
a regular hyperbola. Figures 3(a) and (b) display the level lines for both dissipative and
conservative cases.
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Kovács Z, Szab́o K G and T́el T 1993 Controlling chaos on fractal basin boundariesProc. Dynamical Systems

Conf. (London)to appear
[3] Pyragas K 1992Phys. Lett.170A 421
[4] Dressler U and Nitsche G1992Phys. Rev. Lett.68 1
[5] Lai Y-C, Ding M and Grebogi C 1993Phys. Rev.E 47 86
[6] Abarbanel H D, Brown R, Sidorovich J J and Tsimring L Sh 1993Rev. Mod. Phys.65 1331
[7] Romeiras F J, Grebogi C, Ott E and Dayawansa W P 1992Physica58D 165
[8] Chen G and Dong X 1993Int. J. Bif. Chaos6 1363
[9] Chen G and Dong X 1993IEEE Trans. Circuits Syst.CS-40

Chen G 1993IEEE Trans. Circuits Syst.CS-40829
[10] Romeiras F J, Ott E, Grebogi C and Dayawansa W P 1991 Controlling chaotic dynamical systemsProc.

American Control Conf.(New York: IEEE Press) p 1112
[11] Toroczkai Z 1994Phys. Lett.190A 71
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